wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0xdx(a2cos2x+b2sin2x)2=π2k(a2+b2)a3b3. Find the value of k.

Open in App
Solution

Let I=π0xdx(a2cos2x+b2sin2x)2
Applying integration property f(ax)=f(x)
2I=π0πdx(a2cos2+x+b2sin2x)2=2ππ/20dx(a2cos2x+b2sin2x)2
Using integration property f(2ax)=f(x)
Therefore
I=ππ/20sec2xsec2xdx(a2+b2tan2x)2
Put btanx=atanθbsec2xdx=asec2θdθ
sec2xdx=ab(1+tan2θ)dθ
Therefore
I=ππ/20(1+tan2x)ab(1+tan2θ)dθa4(1+tan2θ)2
=πa3bπ/20(1+a2b2tan2θ)cos2θdθ
=πa3b3π/20(b2cos2θ+a2sin2θ)dθ
=πa3b3[12,π2](b2+a2)=π24a2+b2a3b3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon