Let I=∫π0xdx(a2cos2x+b2sin2x)2
Applying integration property f(a−x)=f(x)
2I=∫π0πdx(a2cos2+x+b2sin2x)2=2π∫π/20dx(a2cos2x+b2sin2x)2
Using integration property f(2a−x)=f(x)
Therefore
I=π∫π/20sec2xsec2xdx(a2+b2tan2x)2
Put btanx=atanθ⇒bsec2xdx=asec2θdθ
⇒sec2xdx=ab(1+tan2θ)dθ
Therefore
I=π∫π/20(1+tan2x)ab(1+tan2θ)dθa4(1+tan2θ)2
=πa3b∫π/20(1+a2b2tan2θ)cos2θdθ
=πa3b3∫π/20(b2cos2θ+a2sin2θ)dθ
=πa3b3[12,π2](b2+a2)=π24a2+b2a3b3