wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0xtanxsecx+tanxdx=

A
π22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π(π2)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π+22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π(π+2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π(π2)2
Let I=π0xtanxtanx+secxdx ...(1)
Using property baf(x)dx=baf(a+bx)dx
We get
I=π0(πx)tan(πx)tan(πx)+sec(πx)dx=π0(πx)tanxtanx+secxdx ...(2)
Adding (1) and (2)
2I=π0πtanxtanx+secxdx
Substitute tan(x2)=t12sec2(x2)dx=dttanx=2t1t2,secx=1+t21t2,dx=21+t2
We get
2I=4π0tdt(t+1)2(t2+1)=2π[(t+1)tan1t+1t+1]0=π⎢ ⎢ ⎢ ⎢x2sin(x2)cos(x2)+sin(x2)⎥ ⎥ ⎥ ⎥π0=π(π2)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon