The correct option is B π(π−2)2
Let I=∫π0xtanxtanx+secxdx ...(1)
Using property ∫baf(x)dx=∫baf(a+b−x)dx
We get
I=∫π0(π−x)tan(π−x)tan(π−x)+sec(π−x)dx=∫π0(π−x)tanxtanx+secxdx ...(2)
Adding (1) and (2)
2I=∫π0πtanxtanx+secxdx
Substitute tan(x2)=t⇒12sec2(x2)dx=dttanx=2t1−t2,secx=1+t21−t2,dx=21+t2
We get
2I=4π∫∞0tdt(t+1)2(t2+1)=2π[(t+1)tan−1t+1t+1]∞0=π⎡⎢
⎢
⎢
⎢⎣x−2sin(x2)cos(x2)+sin(x2)⎤⎥
⎥
⎥
⎥⎦π0=π(π−2)2