The correct option is A True
We have to state whether ∫π0sinxdx can be represented as
limn→∞∑ni=1sin(πin)πn
is true or false.
We know that ∫baf(x)dx=limn→∞[b−an∑ni=1f(a+ib−an)]
Here we have f(x)=sinx,a=0,b=π
Therefore
∫π0sinxdx=limn→∞[π−0n∑ni=1f(0+iπ−0n)]
=limn→∞[πn∑ni=1f(πin)]
=limn→∞[πn∑ni=1sin(πin)]
∫π0sinxdx=limn→∞∑ni=1sin(πin)πn
Hence the answer is TRUE.