(2−3x)412+C
−(2−3x)44+C
−(2−3x)412+C
(2−3x)44+C
∫(2−3x)3dx=(2−3x)3+13+1×1−3+C (∵∫(ax+b)ndx=(ax+b)n+1n+1×1a,n≠{−1,0},a≠0) ⇒∫(2−3x)3dx=−(2−3x)412+C