The correct option is
B 18[4sin2x−sin8x]+cLet
I=∫2sin5xsin3xdxWe know that,
2sinAsinB=cos(a−b)−cos(a+b)
So,
2sin5x.sin3x=cos(2x)−cos(8x)Then,
I=∫[cos(2x)−cos(8x)]dx
=∫(cos2x).dx
∵∫cos2xdx =sin2x2
∫cos8xdx =sin8x8
∴I=sin2x2−sin8x8+c
=18[4sin2x−sin8x]+c
Hence, ∫2sin5xsin3x=18[4sin2x−sin8x]+c