The correct option is B (x2+2x+5)3/2−(x+1)2√x2+2x+5−2sinh−1(x+12)+c
I=∫(3x+2)√x2+2x+5 dx
Now 3x+2 can be written as 32[2x+2]−1
∴I=∫32[(2x+2)√x2+2x+5]dx−∫√x2+2x+5dx
⇒I=A−B.....(i)
Where A=∫32(2x+2)√x2+2x+5 dx
Put x2+2x+5=z ⇒2x+2=dzdx
i.e. (2x+2)dx=dz
∴A=∫32√zdz=32z3/23/2=z3/2
A=(x2+2x+5)3/2
B=∫√x2+2x+5 dx=∫√(x+1)2+22 dx
Now, ∫√x2+a2dx=x√x2+a22+a22sinh−1xa
∴B=(x+1)2√x2+2x+5+222sinh−1(x+12)+C
Substituting A and B in equation (i), we get
I=(x2+2x+5)3/2−(x+1)2√x2+2x+5−2sinh−1(x+12)+C