The correct option is D -1
∫na0f(x)dx=∫a0f(x)dx+∫2aaf(x)dx+.....+....+∫na(n−1)af(x)dx
For ∫2aaf(x)dx put x=a+t
∫2aaf(x)dx=∫a0f(a+t)dt=∫a0f(a+x)dx=∫a0f(x)dx
For ∫3a2af(x)dx put x=a+t
∫3a2af(x)dx=∫2aaf(a+t)dt=∫2aaf(a+x)dx=∫2aaf(x)dx=∫a0f(x)dx∴∫na0f(x)dx=n∫a0f(x)dx∫anaf(x)dx=∫0af(x)dx+∫na0f(x)dx=−∫a0f(x)dx+n∫a0f(x)dx