The correct options are
A ∫αβ√β−xx−αdx D π2(β−α)Let
l=∫βα√x−αβ−xdx
Substitute β−x=t2⇒dx=−2tdt
∴I=∫βα√x−αβ−xdx=2∫√β−a0√√(β−α)2−t2dt
=2[12√(β−α)−t2+(β−α2]sin−1[1√β−α)]√β−α0
=2[0+β−α2sin−1]=2×(β−α2)π2=π2(β−α)
And by using ∫βαf(x)dx=∫βαf(a+b−x)dx
∫βα√x−αβ−xdx=∫βα√β−xx−αdx