The correct option is A −12sin2x+C
Let I=∫sin8x−cos8x1−2sin2xcos2xdx
As sin8x−cos8x=(sin4x+cos4x)(sin2x+cos2x)(sin2x−cos2x)
=∫(sin2x−cos2x)(sin4x+cos4x)1−2sin2xcos2xdx
Since we can use
[(sin2x+cos2x)2−2sin2xcos2x]=(sin4x+cos4x)(1)
=∫sin2x−cos2x[(sin2x+cos2x)−2sin2xcos2x]1−2sin2x−cos2xdx=∫(sin2x−cos2x)dx
=−∫cos2xdx
=−sin2x2+C