The correct option is
D None of the above
Let I=∫√x√x−3√xdx
or ∫x1/2x1/2−x1/3dx
Let x=t6
⇒dx=6t5dt
∴I=∫t3t3−t26t5dt
=6∫t6t−1dt=6∫t6−1+1t−1dt
After dividing we get,
I=6∫(t5+t4+t3+t2+t+1+1t−1)dt
=6[t66+t55+t44+t33+t22+t+log(t−1)]+c
=6[x6+x5/65+x2/34+x1/23+x1/32+x1/6+log(x1/6−1)]+c[∵x=t6⇒t=x1/6]