We know
cos−1(1−x21+x2)=2tan−1x∴∫cos−1(1−x21+x2)dx=2∫tan−1xdx.
Let I=2[tan−1x∫dx−∫{ddx(tan−1x)∫dx}dx]
I=2[tan−1a∫dx−∫{11+x2.x}dx]
I=2xtan−1x−∫2x1+x2dx
Let 1+x2=t⇒2x=dt
∴I=2xtan−1x−∫dtt
=2xtan−1x−logt+C where c= constant of integration
I=2xtan−1x−log(1+x)2+C