Here
I=∫cos3√xdx
Let √x=θ
Differetiate on both side
12√xdx=dθ
dx=2√xdθ
dx=2θdθ
put the value of dx in integeral
I=∫cos3θ(2θdθ)
As we know that the expansion
cos3θ=4cos3θ−3cosθ
cos3θ=cos3θ+3cosθ4
Finally I can be written as:-
I=12∫θ(cos3θ+3cosθ)dθ
=12[θ∫(cos3θ+cosθ)dθ−3(∫d(θ)dθ∫(cos3θ+cosθdθ)dθ]
=12[θ(sin3θ3+sinθ)−3{∫(sin3θ3+sinθ)dθ}]
=12[θ(sin3θ3+sinθ)−3{(−)cos3θ9+(−)cosθ}]+C
I=16[θsin3θ+3θsinθ+cos3θ+9cosθ]+C
Where C is integeral constant