∫11+sinxdx is equal to
(where C is constant of integration)
A
tanx+sec2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tanx−secx+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan2x+secx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanx+secx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Btanx−secx+C ∫11+sinxdx
Dividing and multiplying by (1−sinx) ∫(11+sinx)⋅(1−sinx)(1−sinx)dx {∵1−sin2x=cos2x} =∫1−sinxcos2xdx =∫1cos2xdx−∫sinxcos2xdx =∫sec2xdx−∫tanxsecxdx =tanx−secx+C