Consider the given integral.
I=∫1+2x2x(1+x2)dx
I=∫x(1+2x2)x2(1+x2)dx
I=∫x(1+2x2)(x2+x4)dx
Let t=x2+x4
dtdx=2x+4x3
dt2=x(1+2x2)
Therefore,
I=12∫1tdt
I=12ln(t)+C
On putting the value of t, we get
I=12ln(x2+x4)+C
Hence, this is the answer.