The correct option is A =1√2tan−1(tan2x−1√2tanx)+C
I=∫1sin4x+cos4xdx=∫1/cos4xsin4x+cos4xcos4x
=∫sec4xtan4x+1dx=∫sec2xsec2xtan4x+1dx
=∫(1+tan2x1+tan4x)sec2xdx
Substitute tan x=t and sec2xdx=dt, we get
I=∫1+t21+t4dt=1√2tan−1(t2−1√2t)+C
=1√2tan−1(tan2x−1√2tanx)+C