wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1tan2x+sec2xdx is equal to
(where C is constant of integration)

A
12tan1(2tanx)tan1(tanx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12tan1(2tanx)tan1(2tanx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2tan1(2tanx)tan1(tanx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2tan1(2tanx)tan1(2tanx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2tan1(2tanx)tan1(tanx)+C
Let I=1tan2x+sec2xdx
Multiplying sec2x in numerator and denominator
I=sec2x(tan2x+sec2x)sec2xdx
I=sec2x(1+2tan2x)(1+tan2x)dx
Put 2tanx=t
2sec2xdx=dt
I=12dt(1+t2)(1+t22)
I=2dt(t2+1)(t2+2)
I=2[dt1+t2dt2+t2]
{1x2+a2dx=1atan1(xa)+C}
I=2[tan1t12tan1t2]+C
I=2tan1(2tanx)tan1(tanx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon