The correct option is C √2tan−1(√2tanx)−tan−1(tanx)+C
Let I=∫1tan2x+sec2xdx
Multiplying sec2x in numerator and denominator
⇒I=∫sec2x(tan2x+sec2x)sec2xdx
⇒I=∫sec2x(1+2tan2x)(1+tan2x)dx
Put √2tanx=t
⇒√2sec2xdx=dt
∴I=1√2∫dt(1+t2)(1+t22)
⇒I=∫√2dt(t2+1)(t2+2)
⇒I=√2[∫dt1+t2−∫dt2+t2]
{∵∫1x2+a2dx=1atan−1(xa)+C}
⇒I=√2[tan−1t−1√2tan−1t√2]+C
∴I=√2tan−1(√2tanx)−tan−1(tanx)+C