The correct option is D 118√2ln∣∣∣x√2+√x2−9x√2−√x2−9∣∣∣+C
I=∫1(x2+9)√x2−9dx
Put x=1t
⇒dx=−1t2dt
⇒I=∫1(1t2+9)√1t2−9(−1t2)dt=∫−t dt(1+9t2)√1−9t2
Put 1−9t2=y2
⇒−9t dt=y dy⇒I=∫y9(2−y2)√y2dy=19∫dy(√2)2−y2{∵∫1a2−y2dx=12aln∣∣∣a+ya−y∣∣∣+C}⇒I=118√2ln∣∣∣√2+y√2−y∣∣∣+C=118√2ln∣∣∣√2+√1−9t2√2−√1−9t2∣∣∣+C=118√2ln∣∣
∣
∣
∣∣√2+√1−9(1x)2√2−√1−9(1x)2∣∣
∣
∣
∣∣+C=118√2ln∣∣∣x√2+√x2−9x√2−√x2−9∣∣∣+C