∫2x3−3x2−8x−262x2−5x+2dx=∫(−5x−282x2−5x+2+x+1)dx=−∫5x+282x2−5x+2dx+∫xdx+∫1dx=−∫(5(4x−5)4(2x2−5x+2)+1374(2x2−5x+2))dx+x22+x[writting5x+28as54(4x−5)+1374]=54∫4x−52x2−5x+2dx+1374∫12x2−5x+2dx+x22+x=5log(2x2−5x+2)4−137log(2x−1)12+137log(x−2)12+x22+x+C=61log(2x−1)+3x(x+2)−76log(x−2)6+C