Given the integral,
∫2x+33x+2dx
Let,
u=3x+2⇒dudx=3⇒dx=13du
Substituting these values in the given integral we get,
∫2x+33x+2dx=19∫2u+5udu
For,
∫2u+5udu=∫(5u+2)du=5∫1udu+2∫(1)du=5ln(u)+2u∴19∫2u+5udu=5ln(u)9+2u9=5ln(3x+2)9+2(3x+2)9
Hence, ∫2x+33x+2dx=5ln(3x+2)9+2(3x+2)9+C.