The correct option is B (sinx2+3cosx)+c
I=∫3+2cosx(2+3cosx)2dx
Multiply numerator and denominator by csc2x
I=∫csc2x(3+2cosx)csc2x(2+3cosx)2
I=∫3csc2x+2cosxcsc2x(2cscx+3cosxcscx)2
I=∫3csc2x+2cscxcotx(3cotx+2cscx)2dx
I=−∫−3csc2x+2cscxcotx(3cotx+2cscx)2dx
I=−∫(3cotx+2cscx)−2(−3csc2x−2cscxcotx)dx
∫[f(x)]nf′(x)dx=f(x)n+1n+1
I=−[3cotx+2cscx]−2+1−2+1+C
I=13cotx+2cscx+C
I=sinx3cosx+2+C