wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(3n4+3n3)cosxdx

Open in App
Solution

Given the integral,
3n4+3n3cosxdx=3(n+1)n3secxdx=3(n+1)n3secxdx
For secxdx,
secxdx=secx(tanx+secx)tanx+secxdx=secxtanx+sec2xtanx+secxdx
Let,
u=tanx+secxdudx=sec2x+secxtanxdu=sec2x+secxtanxdx
So,
secxtanx+sec2xtanx+secxdx=1udu=ln(u)=ln(tanx+secx)3(n+1)n3secxdx=3(n+1)n3ln(tanx+secx)
Hence, 3n4+3n3cosxdx=3(n+1)n3ln(|tanx+secx|)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon