wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

3sinx+2cosx3cosx+2sinx.dx

Open in App
Solution

Let, I=3sinx+2cosx3cosx+2sinxdx
We write,
3sinx+2cosx=λ(3cosx+2sinx)+μ[ddx(3cosx+2sinx)]=λ(3cosx+2sinx)+μ(3sinx+2cosx)=sinx(2λ3μ)+cosx(3λ+2μ)
Thus, 2λ3μ=3(1)3λ+2μ=2(2)
Solving equation (1) and (2) we get,
λ=1213μ=513
I=μ(3sinx+2cosx)+λ(3cosx+2sinx)3cosx+2sinxdx=λdx+μ3sinx+2cosx3cosx+2sinxdx
Now, let 3cosx+2sinx=t(3sinx+2cosx)dx=dt3sinx+2cosx3cosx+2sinxdx=dtt=log|t|+C=log(3cosx+2sinx)+C
putting the value in I,
I=λdx+μ3sinx+2cosx3cosx+2sinxdx=λx+μ[log(3cosx+2sinx)]+C=1213x513log(3cosx+2sinx)+C
3sinx+2cosx3cosx+2sinxdx=1213x513log(3cosx+2sinx)+C



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon