The correct option is C 52(x−1)2+5(x−1)+C
Let I=∫5x(1−x)3dx
Let 5x(1−x)3=A(1−x)+B(1−x)2+C(1−x)3
⇒5x=A(1−x)2+B(1−x)+C
⇒5x=A(1−2x+x2)+B(1−x)+C
On equating the coefficients of x2,x and constant terms, we get
0=A,5=−2A−B,0=A+B+C
Therefore, 5=−2(0)−B⇒B=−5
and 0=0−5+C
⇒C=5
Thus 5x(1−x)3=0+−5(1−x)2+5(1−x)3
On integrating both sides, we get
∫5x(1−x)3dx=∫−5(1−x)2dx+∫5(1−x)3dx
=−5(−1)−1(1−x)1+5(−1)−2(1−x)2
=−51−x+52(1−x)+C
=52(x−1)2+5x−1+C