wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

5xdx(1x)3 is equal to :

A
52(x1)25(x1)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
52(x1)2+5(x1)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
53(x1)2+52(x1)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
53(x1)252(x1)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
52(x1)2+5(x1)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 52(x1)2+5(x1)+C
Let I=5x(1x)3dx
Let 5x(1x)3=A(1x)+B(1x)2+C(1x)3
5x=A(1x)2+B(1x)+C
5x=A(12x+x2)+B(1x)+C
On equating the coefficients of x2,x and constant terms, we get
0=A,5=2AB,0=A+B+C
Therefore, 5=2(0)BB=5
and 0=05+C
C=5
Thus 5x(1x)3=0+5(1x)2+5(1x)3
On integrating both sides, we get
5x(1x)3dx=5(1x)2dx+5(1x)3dx
=5(1)1(1x)1+5(1)2(1x)2
=51x+52(1x)+C
=52(x1)2+5x1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Division of an Expression by a Expression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon