The correct option is A −log|cotx+tanα|
∫cos(x−(x−α)sinxcos(x−α)dx=∫cos(x−α)cosx+sin(x−α)sinxsinxcos(x−α)dx
=∫(cotx+tan(x−α)) dx
=ln|sinx|−ln|cos(x−α)|+C=−ln∣∣∣cos(x−α)sinx∣∣∣+C=−ln∣∣∣cosαcosx+sinαsinxsinx∣∣∣+C
=−ln|cosαcotx+sinα|+C
=−ln|cosα(cotx+tanα)|+C
=−ln|(cotx+tanα)|+c,
where c=−lncosα+C