The correct option is C sinx1+2sin(x+π3)+c
I=∫cosx+√31+4sin(x+π3)+4sin2(x+π3) dx
=∫cosx+√3(1+2sin(x+π3))2 dx
=∫cosx+√3(1+sinx+√3cosx)2 dx
=∫cosx+√3sin2x(cosec x+1+√3cotx)2 dx
=∫cotx cosec x+√3 cosec2x(1+cosec x+√3cotx)2 dx
Put 1+cosec x+√3cotx=t
⇒−(cosec xcotx+√3 cosec2x)dx=dt
∴I=∫−dtt2
=1t+c
=11+cosec x+√3cotx+c
=sinx1+2sin(x+π3)+c