The correct option is
C 13log|ex−1|−13log|ex+2|+cConsider,
I=∫1ex+1−2e−x=∫exe2x+ex−2dx
(ex−1)(ex+2)=e2x+ex−2
=∫exe2x+ex−2)dx=∫ex(e2x+ex−2)dx
=∫ex(ex−1)(ex+2)dx=∫ex3[1ex−1−1ex+2]dx
=13∫ex(ex−1)dx−13∫ex(ex+2)dx
Let ex−1=t
ex+2=u
exdx=dt
exdx=du
=13log(t)−13logu+c
=13log(ex−1)−13log(ex+2)+C
=13[log|ex−1|−log|ex+2|]+C
Option C