The correct option is
C −2(b−a)√x−ab−x+cLet ∫1(x−b)√(x−a)(b−x)dx=∫1(−1)(b−x)√{−(b−x)+b−a}(b−x)dx=I
Substitute
b−x=1t and dx=dtt2
Therefore
I=∫1(−1)(1t)√{−1t+b−a}(1t)dtt2
=∫1(−1)√{(b−a)t−1}dt
Now substitute
(b−a)t−1=u and dt=du(b−a)
So integration become
I=−1(b−a)∫1√udu
=−2√u(b−a)+C
=−2√(b−a)t−1(b−a)+C
=−2(b−a)√x−ab−x+C