The correct option is C 15√3tan−1(5x√12−9x2)+c
I=∫dx(3+4x2)√(4−3x2)
Put x=2√3sint⇒√4−3x2=2cost
⇒dx=2√3cost dt
⇒∫2√3cost dt(3+163sin2t)√4−4sin2t
⇒I=∫√3dt9+16sin2t
⇒I=∫√3sec2t dt9sec2t+16tan2t
⇒I=∫√3sec2t dt9+25tan2t
tant=r⇒sec2tdt=dr
⇒I=∫√3dr9+25r2=√39∫dr1+(5r3)2=√39tan−1(5r3)×35
x=2√3sint⇒tant=√3x√4−3x2
I=15√3tan−1(5x√12−9x2)+c