The correct option is A k=2/3
∫dx5+4(1−tan2x21+tan2x2)⇒∫dx(5+5tan2x2+4−4tan2x2)(1+tan2x2)=ktan−1(mtanx2)+C⇒∫(1+tan2x2)(tan2x2+9)dx⇒∫sec2x2dx(tan2x2+9)[∵iftan2x2=sec2x2]lettanx2=t(sec2x2)12dx=dtdx=2dtsec2x2⇒2∫sec2x2×dtsec2x2(t2+32)⇒∫dt(t2+32)[∵∫dxa2+x2=1atan−1xa+c]⇒2×13tab−1(t3)+c=ktan−1(13⋅tanx2)+c⇒23tan−1(tanx23)+cbycomparingk=23,andm=13