The correct option is C 1abtan−1(batanx)+C
I=∫dxa2cos2x+b2sin2x
Dividing numerator and denominator by cos2x
⇒I=∫sec2x dxa2+b2tan2x
Put tanx=t
⇒sec2xdx=dt⇒I=∫dta2+b2t2⇒I=1b2∫dtt2+(ab)2⇒I=1b2⋅batan−1(bat)+C[∵∫1x2+a2dx=1atan−1(xa)+C]∴I=1abtan−1(batanx)+C