The correct option is
C ln∣∣∣sec2x2cos3x3cos6x6∣∣∣+c∫dxcotx2cotx3cotx6I=∫tanx2tanx3tanx6dn
⇒tanx6=tan(x2−x3) [tan(AB)=tanA−tanB1+tanA+tanB]
tanx6=tanx/2+tanx/31+tanx/2tanx/3
⇒tanx6(1+tanx2tanx3)=tanx2−tanx3
⇒tanx6+tanx2tanx3tanx6=tanx2−tanx3
Integrating both sides we get
tanx6dx+∫tanx2tanx3tanx6dn=∫tanx2dx−∫tanx3dn
I=∫tanx2dx−∫tanx3dn−∫tanx6dn [from equation]=2log∣∣∣secx2∣∣∣−3log∣∣∣secx3∣∣∣−6log∣∣∣secx6∣∣∣+C
=log∣∣∣sec2x2∣∣∣+log∣∣∣cos3x3∣∣∣+log∣∣∣cos6x6∣∣∣+C
I=log∣∣∣sec2x2+cos3x3+cos6x6∣∣∣+C