The correct option is
A cosecaln∣∣∣sinxsin(x+a)∣∣∣+C∫dxsinx⋅sin(x+a)
=∫dxsinx(sinxcosa+cosxsina)
=∫dxsin2x(cosa+cosxsinxsina)
=∫dxsin2x(cosa+cosxsinxsina)
=∫cosec2xdx(cosa+cotxsina)
Let cotx=t then cosec2xdx=−dt
=−∫dtcosa+sinat ........... (∵∫1xdx=lnx+c)
=−1sinalog|cosa+sinat|+c
=−cosec a log|cosa+sinacotx|+c
=−cosec a log∣∣∣cosa+sina×cosxsinx∣∣∣+c
=−cosec a log∣∣∣sinxcosa+sinacosxsinx∣∣∣+c
=+cosec a log∣∣∣sinxsin(x+a)∣∣∣+c ...................(∵−logx=log1x).