∫dx√x(x+9) is equal to, (x>0) (where C is integration constant)
A
29tan−1(√x3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2tan−1(√x3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
23tan−1(√x3)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tan−1(√x3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C23tan−1(√x3)+C I=∫dx√x(x+9)=∫dx√x((√x)2+32)
Putting √x=t ⇒dx√x=2dt⇒I=∫2t2+32dt=23tan−1(t3)+C{∵∫1x2+a2dx=1atan−1(xa)+C}=23tan−1(√x3)+C