The correct option is C etan−1x(tan−1x)2+c
Let
I=∫etan−1x(1+x2)[(sec−1√1+x2)2+cos−1(1−x21+x2)]dx
We know for x>0
sec−1 √1+x2=tan−1xcos−1(1−x21+x2)=2tan−1x⇒I=∫etan−1x1+x2[(tan−1x)2+2tan−1x]dx
Putting tan−1x=t
⇒dx1+x2=dt=∫et(t2+2t) dt ↓f(x) ↓f′(x) =(et⋅t2)+c[∵∫ex{f(x)+f′(x)}dx=exf(x)+c]=etan−1x(tan−1x)2+c