3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 1
∫ x+1 2 x x ...
Question
∫
(
x
+
1
)
2
x
(
x
2
+
1
)
d
x
is equal to
A
log
∣
∣
x
(
x
2
+
1
)
∣
∣
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log
|
x
|
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log
|
x
|
+
2
tan
−
1
x
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
log
(
1
1
+
x
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
2
log
|
x
|
+
tan
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
log
|
x
|
+
2
tan
−
1
x
+
C
Let
I
=
∫
(
x
+
1
)
2
x
(
x
2
+
1
)
d
x
=
∫
x
2
+
1
+
2
x
x
(
x
2
+
1
)
d
x
=
∫
x
2
+
1
x
(
x
2
+
1
)
d
x
+
∫
2
x
x
(
x
2
+
1
)
d
x
=
∫
1
x
d
x
+
2
∫
1
x
2
+
1
d
x
=
log
|
x
|
+
2
tan
−
1
x
+
C
Suggest Corrections
0
Similar questions
Q.
If
∫
(
x
2
−
1
)
(
x
+
1
)
2
√
x
(
x
2
+
x
+
1
)
d
x
=
A
tan
−
1
(
√
x
2
+
x
+
1
x
)
+
c
, in which
c
is a constant, then
A
=
Q.
∫
(
1
+
√
t
a
n
x
)
(
1
+
t
a
n
2
x
)
2
t
a
n
x
d
x
equal to
Q.
∫
1
1
-
cos
x
-
sin
x
d
x
=
(a)
log
1
+
cot
x
2
+
C
(b)
log
1
-
tan
x
2
+
C
(c)
log
1
-
cot
x
2
+
C
(d)
log
1
+
tan
x
2
+
C
Q.
Evaluate
∫
x
dx
(
x
−
1
)
(
x
2
+
4
)