∫secxdxb+atanx
=∫1/cosx(bcosx+asinx)/cosxdx
=∫1bcosx+asinxdx
=∫1
⎷a2+b2{b√a2+b2cosx+a√a2+b2sinx}dx
=1√a2+b2∫1{b√a2+b2cosx+a√a2+b2sinx}dx
Let b√a2+b2=sinA and a√a2+b2=cosA
We can see that b2(√a2+b2)2+a2(√a2+b2)2=1=sin2Acos2A, So our choice is justified. Substituting we get
=1√a2+b2∫1sinAcosx+cosAsinxdx
=1√a2+b2∫1sin(A+x)dx (∵sin(A+B)=sinA.cosB+cosA.sinB)
=1√a2+b2∫cosec(A+x)dx
=1√a2+b2ln|tan(A+x)|+c
=1√a2+b2ln∣∣
∣∣tan(x+sin−1b√a2+b2)∣∣
∣∣+c