We are given that, I=∫sin2xa(cos2x)+bsin3xdx
I=∫sin2xa(1−sin2x)+bsin2xdx
=∫sin2xa+(b−a)sin2xdx
let sin2x=t
So, differentiation of above equation
wrt x we get
2 sin x. cos x dx = dt
sin 2x dx = dt
I=∫dta+(b−a)t
=1(b−a)∫dtab−a+t
=1b−aln∣∣∣t+ab−a∣∣∣+C
I=1b−aln∣∣∣sin2x+ab−a∣∣∣+C
So, ∫sin2xacos2x+bsin2xdx=1b−aln∣∣∣sin2x+ab−a∣∣∣+C