No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log|1+e−xsinx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log|1+exsinx|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
log|1−e−xsinx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
log|1+e2xsinx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Clog|1+exsinx|+C Let l=∫sinx+cosxe−x+sinxdx =∫ex(sinx+cosx)(1+exsinx)dx Put t=1+exsinx ⇒dt=(exsinx+excosx)dx =ex(sinx+cosx)dx Then, l=∫dtt=log|t|+C ⇒l=log|1+exsinx|+C