The correct option is D √1−x(√x−2)+cos−1√x+C1
I=∫√1−√x√1+√xdx
Putting x=t2 and dx=2t dt, we get
I=2∫√1−t1+t⋅t dt⇒I=2∫t(1−t)√1−t2dt⇒I=∫(2t√1−t2+−2t2√1−t2)dt⇒I=∫2t√1−t2dt+2∫(1−t2)−1√1−t2dt⇒I=−∫−2t√1−t2dt+2∫√1−t2dt−2∫1√1−t2dt⇒I=−2√1−t2+2×12[t√1−t2+sin−1t]−2sin−1t+C⇒I=−2√1−t2+t√1−t2−sin−1t+C∴I=√1−x(√x−2)−sin−1√x+C⇒I=√1−x(√x−2)−(π2−cos−1√x)+C∴I=√1−x(√x−2)+cos−1√x+C1[∵sin−1x+cos−1=π2]