Consider, I=∫√5+x2x4dx
I=∫√5x2+1(x)(x3)dx
Put t=5x2+1
dtdx=−10x3 ⇒−dt10=dxx3
Substituting this in the given integral, we get
⇒−dt10=dxx3⇒−110∫√tdt⇒−110t32(32)+c⇒−t3215+c⇒−115(5x2+1)32+c
So, option C is correct.