The correct option is C −13(1+1x2)3/2[log(1+1x2)−23]+c
I=∫√x2+1(log(x2+1)−2logx)x4dx
=∫√x2+1(log(x2+1)−logx2)x4dx
=∫√x2+1(log(x2+1x2))x4dx
=∫√x2+1(log(1+1x2))x4dx
=∫√x2+1x2(log(1+1x2))x3dx
=∫√1+1x2(log(1+1x2))x3dx
let1+1x2=t2
differentiatingbothsides
−2x3dx=2tdt
I=−∫tlogt2(tdt)
=−2∫t2logtdt
integrationbyparts
=−2[logt(t33)−∫t23dt][∫uvdx=u∫vdx−∬vd(u)dx]
=−2[t33logt−t39]
=−2[13log√1+1x3(1+1x2)3/2−19(1+1x2)3/2]
=−13(1+1x2)3/2[log(1+1x2)−23]+c