The correct option is A
√x2+ax−√ax+a2−acosh−1(√x+aa)+c
Let I=∫√x−√a√x+adx
Put u=√x⇒du=12√xdx
I=2∫u(u−√a)√a+u2du
Put u=√atant⇒du=√asec2tdt
∴I=2√a∫tantsect(√atant−√a)dt=2√a∫(√atan2tsect−√atantsect)dt=2a∫tan2tsectdt−2a∫tantsectdt=2a∫sect(sec2t−1)dt−2a∫tantsectdt=2a∫sec3tdt−2a∫sectdt−2a∫tantsectdt
Using reduction formula
∫secmxdx=sinxsecm−1xm−1+m−2m−1∫secm−2xdx
∴I=atantsect−a∫sectdt−2a∫tantsectdt=−alog(tant+sect)+atantsect−2asect
=√x2+ax−√ax+a2−acosh−1(√x+aa)+c