Consider the following Equation.
I=∫t2t3+1dt
x=t3+1
dxdt=2t2
=∫t2x∗12t2dx
=12lnx+C
=12ln(t3+1)+C
Let θ∈(0,π4) and t1=(tanθ)tanθ,t2(tanθ)cott3=(cotθ)tanθ and t4(cotθ)tanθ , then