The correct option is D log[tan−1(x+1x)]+C
Let, I=∫x2−1(x4+3x2+1)tan−1(x+1x)dx
On dividing numerator and denominator by x2, we get
I=∫1−1x2(x2+1x2+3)tan−1(x+1x)dx
Put x+1x=t
⇒(1−1x2)dx=dt and
⇒x2+1x2=t2−2
Therefore, I=∫dt(t2−2+3)tan−1t
=∫dt(1+t)2tan−1t
=log(tan−1t)+C
=log[tan−1(x+1x)]+C.