wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x2(xsec2x+tanx)(xtanx+1)2dx=

A
x2xtanx+12log|xsinx+cosx|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2xtanx+1+2log|xsinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2xcotx+1+2log|xsinx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2xtanx+1+2log|xcosx+cosx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B x2xtanx+12log|xsinx+cosx|+C
Let I=x2(xsec2x+tanxxtanx+1)dx
Using IBP & put xtanx+1=t
then (xsec2x+tanx)dx=dt
I=x21tdt2(x1tdt)dx
=x2xtanx+12xxtanx+1dx
=x2xtanx+12xcosxxsinx+cosxdx

xcosxxsinx+cosxdx
u=xsinx+cosx
xcosxdx=du
=1udu
=lnu
=ln(xsinx+cosx)
xcosxxsinx+cosxdx=ln|xsinx+cosx|+C

x2xtanx+12
=x2xtanx+12ln|xsinx+cosx|+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon