The correct option is C sinx−xcosxxsinx+cosx+c
I=∫x2dx(xsinx+cosx)2
I=∫(xcosx)(xcosx(xsinx+cosx)2)dx
=(xcosx)∫(xcosx(xsinx+cosx)2)dx−∫[ddx(xcosx)∫(xcosx(xsinx+cosx)2)dx]dx...(1)
Let u=∫(xcosx(xsinx+cosx)2)dx
put xsinx+cosx=t⇒xcosxdx=dt
u=∫1t2dt=−1t=−1xsinx+cosx
From equation (1)
I=(xcosx)[−1xsinx+cosx]−∫[(cosx+xsinxcos2x)(−1xsinx+cosx)]dx
=−xcosx(xsinx+cosx)+∫sec2xdx
=−xcosx(xsinx+cosx)+tanx+c
=sinx−xcosxxsinx+cosx+c