The correct option is B x22−2x+3ln|x+1|+1x+1+C
Adding and subtracting 1 in the numerator, we get
∫x3(x+1)2dx=∫x3+1−1(x+1)2dx
=∫x3+1(x+1)2dx−∫1(x+1)2dx
=∫(x+1)(x2−x+1)(x+1)2dx−∫1(x+1)2dx
=∫(x2−x+1)(x+1)dx−∫1(x+1)2dx
=∫(x−2+3x+1)dx−∫1(x+1)2dx
=x22−2x+3ln|x+1|+1x+1+C