The correct option is
B tan−1x+13tan−1(x3)+c∫x4+1x6+1dx
=∫x4+1x6+1(x2+1)(x2+1)dx [ multiplying numerator and denominator by x2+1 ]
=∫x6+x2+x4+1(x6+1)(x2+1)dx
=∫(x6+1)+x2(x2+1)(x6+1)(x2+1)dx
=∫(x6+1)(x6+1)(x2+1)dx+∫x2(x2+1)(x6+1)(x2+1)dx
=∫dxx2+1+13∫3x2dx(x6+1)
⇒x3=t ⇒3x2dx=dt
=∫dxx2+1+13∫3x2dx(x3)2+1
=∫dxx2+1+13∫dtt2+1
=tan−1x−113tan−1t+c
=tan−1x+13tan−1(x3)+c
Hence, the answer is tan−1x+13tan−1(x3)+c.