∫(xln2+1)x(1+x⋅2x)2dx is equal to
(where C is a constant of integration)
A
ln(11+2x)+11+2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln(x⋅2x1+x⋅2x)+11+x⋅2x+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ln(x⋅2x1+x⋅2x)−11+x⋅2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln(11+2x)+x⋅2x1+x⋅2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bln(x⋅2x1+x⋅2x)+11+x⋅2x+C Put x⋅2x=t ⇒dt=2x(1+xln2)dx ∴I=∫dtt(1+t)2=∫1+t−tt(1+t)2dt=∫(1t−11+t−1(1+t)2)dt =ln|t|−ln|1+t|+11+t+C =ln(t1+t)+11+t+C=ln(x⋅2x1+x⋅2x)+11+x⋅2x+C