The correct option is D −12ln|x+1|+72ln|x+3|+c
∫3x+2(x+1)(x+3)dx
Resolving 3x+2(x+1)(x+3) into partial fractions
3x+2(x+1)(x+3)=A(x+1)+B(x+3) .....(1)
3x+2=A(x+3)+B(x+1)
When x=−3⇒B=72
When x=−1⇒A=−12
Substituting these values in (1), we get
3x+2(x+1)(x+3)=−12(x+1)+72(x+3)
Integrating both sides, we get
⇒∫3x+2(x+1)(x+3)dx=−12∫1(x+1)dx+72∫1(x+3)dx
∫3x+2(x+1)(x+3)dx=−12log|x+1|+72log|x+3|+C